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ABSTRACT
Given a query location and a set of query keywords, a top-k
spatial keyword query rank objects based on the distance
to the query location and textual relevance to the query
keywords. Several solutions have been proposed for top-k
spatial keyword queries in Euclidean space. However, few
algorithms study top-k keyword queries in undirected road
networks where every road segment is undirected. Even
worse, insufficient attention has been given to the process-
ing of keyword queries in directed road networks where each
road segment has a particular orientation. Therefore, in
this paper, we present an algorithm called eSPAK that can
efficiently answer the top-k spatial keyword queries in di-
rected road networks. Our experimental results demonstrate
that eSPAK significantly outperforms conventional solution
in terms of query processing cost.

CCS Concepts
•Information systems→ Data management systems;
Query processing;

Keywords
spatial keyword queries, directed road networks, location-
based services

1. INTRODUCTION
With the popularization of geo-tagged data (e.g., geo-

tagged photos, videos, check-ins, and text messages), many
online location-based services such as Google Maps, Yahoo
Maps, and Bing Maps have started providing useful infor-
mation via location-based queries [9, 2]. At the same time,
a textual description of the point of interests, e.g., hotels,
shopping malls and tourist attractions, are easily accessible
on the web. These developments call for techniques that
efficiently process the top-k spatial keyword queries that re-
turn a ranked list of k best facilities based on their proximity
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to the query location and relevance to the query keywords.
Therefore, several algorithms have been proposed for pro-
cessing top-k spatial keyword queries in Euclidean space [3,
8]. Although few algorithms exist that study the keyword
queries in a road network, however, they all focus on the
undirected road network. In this paper, for the first time,
we are investigating a top-k spatial keyword queries in di-
rected road networks which are more closely related to the
real world scenario.

Top-k keyword queries can be used for a wide range of
applications in recommendation systems and decision sup-
port systems. For example, a tourist may want to retrieve
a sorted list of restaurants that serve Italian steak based
on shortest distance from her location and textual relevance
to the query keywords. Given a set of data objects D =
d1, d2, ..., d|D|, query location and set of keywords, the top-k
spatial keyword query returns the best k data objects from
D according to their combined textual and spatial relevance
to query.

Figure 1 presents an example of a directed road network
where rectangles represents the data objects with a tex-
tual description, and the triangle represent the query lo-
cation. The number label on each edge indicates the dis-
tance between two adjacent objects e.g., dist(n1, d1) = 1
and dist(d1, n2) = 2. Consider a scenario where a tourist
is interested in finding an “Italian restaurant”. If an undi-
rected road network is considered, the top-1 Italian restau-
rant is d6. However, in directed road network the shortest
path from q to d6 is (q → n3 → n7 → d6). Therefore, for
directed road network, top-1 result is d3 because it is closer
to query location than d6. Now consider tourist is looking
for “Cafe bakery”, the data object d7 may score better than
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Figure 1: An illustration of directed road network.
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the data object d1 because d7 (“Cafe and bakery”) is more
textually relevant to query keywords than d2 (“Cafe”), and
the dist(q, d7) is just slightly bigger than dist(q, d2).

Top-k spatial keywords in directed road networks are use-
ful for location-based applications. However, the query pro-
cessing is costly, because it requires computing several short-
est paths while considering the orientation of road segments.
To the best of our knowledge, this is the first attempt to
study top-k spatial keyword queries in directed road net-
works. In this paper, we propose a methodology to rank the
data objects based on the spatial and textual relevance.

Below, we summarize our contributions:

• We propose an efficient indexing technique that indexes
the data objects in inverted files for processing top-k spa-
tial keyword queries in directed road networks.

• We present an algorithm eSPAK that exploits the indexing
framework to effectively retrieve top-k results.

• Finally, we conduct extensive experiments on a real road
network and demonstrate the superiority of our proposed
algorithm over baseline approach.

2. RELATED WORK
Several approaches have been proposed for ranking spa-

tial data objects. Harihran et al. [7] proposed an indexing
structure KR*-tree by capturing the joint distribution of
keywords in space. Ian de Felipe et al. [4] proposed a data
structure which combines an R-tree with text signatures.
Each node of the R-tree exploits a signature to indicate the
presence of keywords in the sub-tree of the node. How-
ever, both of these approaches only handles boolean keyword
queries in Euclidean space.

Top-k spatial keyword queries where data objects are ranked
according to their combined textual and spatial relevance to
keyword queries was first studied by Cong et al. [3] and Li
et al. [8]. Both studies [8] integrates location indexing and
text indexing to generate IR-trees. These studies process
top-k spatial keyword queries only in Euclidean space and
not suitable for processing top-k spatial preference queries
in road networks, where the distance between objects is de-
termined by the shortest path connecting them.

Top-k spatial keyword queries in road networks was in-
troduced by Rocha et al. [10]. In particular, they pro-
posed three different indexing techniques (Base Indexing,
Enhanced Indexing and Overlay Indexing) for processing
spatial keyword queries in road networks. Recently, Guo
et al. [6] studied continuous top-k spatial keyword queries
on road networks. They presented two methods for monitor-
ing moving queries in an incremental manner which reduces
the traversing of network edges. Different from [10, 6] in this
study we consider top-k spatial keyword queries in directed
road networks where each road segment has a particular ori-
entation.

3. PRELIMINARIES
Section 3.1 defines the terms and notations that are used

in this paper. Section 3.2 formulates the problem using an
example that illustrates the general results of top-k spatial
keyword queries.

3.1 Definition of Terms and Notations
Road Network: A road network is represented by a weighted

directed graph G = (N,E,W ) where N, E and W denote

the node set, edge set and edge distance matrix, respec-
tively. Each edge is also assigned an orientation which is
either undirected or directed. The undirected edge is rep-
resented by e = nsne where ns and ne are adjacent nodes,
whereas directed edge represented as e = −−→nsne or e =←−−nens.
Naturally, the arrow above the edge indicates associated di-
rection. We refer ns as starting node and ne as ending node
of edge. For example in Figure 1, n6 is starting node of edge
−−→n6n2, whereas it is ending node for edge ←−−n6n5. The partic-
ular edge where query object is located is called the active
edge.

3.2 Problem Formulation
Similar to previous studies [3, 10] we assume each data

object d ∈ D has a point location d.l in road network and a
text description d.t. Given a query location q.l, set of key-
words q.t and k number of data objects to return, the top-
k spatial keyword query Qk is defined as Qk = (q.l, q.t, k),
which takes three arguments and returns best k data objects
from D according to score that takes into consideration spa-
tial proximity and text relevance. The score ψ(d) of a data
object d is defined by the following equation:

ψ(d) =
µ(d.t, q.t)

1 + α · λ(d.l, q.l)
(1)

where λ(d.l, q.l) is the spatial relevance between d.l and
q.l, µ(d.t, q.t) is the textual relevance between d.t and q.t and
α is a positive real number that determines the importance
of one measure over the other. For example, if only spatial
relevance is considered then α = 0, if more importance is
given to textual relevance then α > 1.

Spatial relevance (λ) is defined as the shortest distance be-
tween data object d and q : λ(d.l, q.l) = dist(d.l, q.l). Thus,
dist(di.l, q.l) < dist(dj .l, q.l) indicates that data object di is
more spatially relevant to q than data object dj . The textual
relevance (µ) can be computed using any popular informa-
tion retrieval model, such as cosine similarity or language
model. In this study, we use the cosine similarity between
d.t and q.t. The textual relevance is defined as:

µ(d.t, q.t) =

∑
t∈q.t wt(d.t).wt(q.t)√∑

t∈p.t[wt(d.t)]
2.
∑
t∈q.t[wt(q.t)]

2
(2)

Here, the weight wt(d.t) represents the frequency of term
t in d.t, and the weight wt(q.t) describes the ratio of total
number of data objects in D to the number of data objects
that contains t in their description. Higher µ means, the
higher textual relevance to query keywords.

4. QUERY PROCESSING SYSTEM
In this section, we present our proposed query processing

system that indexes the data objects and prunes the irrele-
vant edges for efficient query processing. In Section 4.1, we
discuss indexing framework and in Section 4.2, we present
an efficient keyword query processing algorithm (eSPAK).

4.1 Indexing Framework
We implemented the inverted file for indexing data ob-

jects. The inverted file contains vocabulary and inverted
lists. The vocabulary keeps general information about each
term such as frequency of term which is helpful in comput-



ing the textual relevance of the data objects. The inverted
list stores the data objects located on the edge −−→nsne that
have a term t in their description. An inverted list is iden-
tified by a key composed of (eid, tid), eid and tid represents
edge id and term id, respectively. Each inverted file is a
set of inverted lists. The separate inverted list is used for
each term in the object description. Inverted list stores two
attributes for each data object: first, the distance between
data object and starting node dist(ns, di); second, the sig-
nificance factor θ(ti, di) of the term ti in the description of
the data object. Note that the network distance between
two points in directed road networks is not symmetrical (i.e,
dist(ns, di) 6= dist(di, ns)). Recall that the starting node is
chosen according to orientation of edge such that direction
of edge is from node towards data object. In Figure 1, n3

is starting node for d7. For bi-directional edges any of the
adjacent node can act as starting node.

Furthermore, we develop a pruning technique to prune the
irrelevant edges. To achieve this, we introduce a highest sig-
nificance factor (θt) of term t in the description of objects
lying on the edge. The θt on an edge is retrieved by a combi-
nation of eid and tid. The θt is an upper-bound significance
for an object on the edge with t. Naturally, the edges with
θt smaller than the score of the k-th object found so far are
pruned.

The proposed indexing scheme has three main advantages.
First, the object search relevant to query keywords is very
efficient using the (eid, tid) pair. Second, inverted files also
store the network distance between starting node and data
object which helps in accessing the data object in the di-
rected road network. Finally, the pruning technique allows
faster query processing by exploring fewer edges.

4.2 eSPAK: Query Processing Algorithm
eSPAK traverses the road network incrementally in a sim-

ilar fashion to Dijkstra’s algorithm [5]. Algorithm 1 returns
top-k data objects with highest scores according to their
joint textual and spatial relevances to the query. The algo-
rithm begins by exploring the active edge where query object
q is located and expands the network in an increasing or-
der of distance from q. Each entry in the min-heap takes
the form (pa, edge), where pa indicates the anchor point in
the edge. For an active edge, q becomes the anchor point.
Otherwise, for directed edges starting node ne becomes the
anchor point or for bi-directional edges either of the adja-
cent node, i.e., ns or ne becomes the anchor point. Let Dk
be the current set of top-k data objects and sk be the score
of k-th data object in Dk. candsearch((eid, tid), sk) function
retrieves the candidate data objects Dc located in an edge
with better score ψ(d) than sk. Next, the Dk set is updated
with the data objects in Dc and so does sk. The algorithm
continues its expansion and inserts the adjacent edges of the
boundary node until the heap is exhausted or the remaining
data objects cannot have the better score than sk.

The candsearch((eid, tid), sk) procedure finds the candi-
date data objects in two steps. In first step, the upper-bound
score of edges is computed using a significance factor (θt) of
a term t ∈ q.t and the shortest distance sdist(ei, q.l) between
edge and the query location. In next step, the inverted lists
of term t are fetched, if their upper-bound score is higher
than sk. In inverted lists, the objects whose score ψ(d) is
greater than sk are returned.

In order to give a feel for our proposed algorithm, consider

Algorithm 1: eSPAK: Query Processing Algorithm.

1 Input: Top-k spatial keyword query QN = (q.l, q.t, k)
2 Output: Top-k data objects with highest score
3 Dc ← ∅ /*set of candidate data objects
4 max-heap Dk ← ∅ /*current Top-k set
5 sk ← 0 /*k-th score in Dk
6 min-heap ← ∅
7 explored ← ∅
8 min-heap.insert(q.l, edgeactive)
9 while min-heap 6= ∅ or (equ) do

10 (pa, edge)← min-heap.pop()
11 if (pa, edge) /∈ explored then
12 explored ← explored ∪ (pa, edge)
13 Dc ← candsearch((eid, tid), sk)
14 update Dk and sk
15 end
16 else
17 min-heap.push(adjacent node, edge)
18 end
19 end
20 return Dk

a road network presented in Figure 1. Assume, a query q
generated a top-1 keyword query with q.d “Italian restau-
rant”. For the ease of presentation, we assume α = 1 and the
textual relevance µ is the number of occurrence of query key-
words in d.t divided by the number of keywords in the doc-

ument. For example, the ψ(d4) = µ(d4.t,q.t)
1+λ(d4.l,q.l)

= 0.5
8

= 0.06.

The algorithm starts the network expansion from active edge
−−→n2n3 where q is the anchor point. Note that the direction
of edge −−→n2n3 is from n2 to n3. Therefore, algorithm only
explore −→qn3. There is no data object found in −→qn3. Then, n3

becomes anchor point and edges −−→n3n4, n3n5 and −−→n3n7 are
inserted in min-heap. Next, candsearch function retrieves
the candidate data objects on edges −−→n3n4, n2n3 and −−→n3n7

whose score is better than sk. On edge n3n5 data object d3
is retrieved with ψ(d3) = 0.2. The data object d3 is inserted
in Dk set and the value of sk is set to 0.2. For edge −−→n3n4

and −−→n3n7 there is no candidate object found because d2.t
(“Cafe”) and d7.t (“Cafe and Bakery”) does not match with
q.t. The algorithm continues expanding the edges whose
upper-bound score is greater than sk. The edge −−→n7n2 is ex-
plored next, the upper-bound score of −−→n7n2 is 1

7
which is less

than sk. Similarly, for edge ←−−n5n6 the upper-bound score is
0.5
8
< sk. Therefore, algorithm terminates reporting d3 as

top-1 result.

5. PERFORMANCE EVALUATION
In this section, we evaluate the performance of eSPAK

through simulation experiments. We describe experiment
settings in Section 5.1 and present experimental results in
Section 5.2.

5.1 Experimental Settings
All of our experiments are performed using a real road net-

work [1] that comprised the main roads of North America,
with 175,812 nodes and 179,178 edges. Both the direction
of edges and data points on edges are generated randomly.

Table 1: Experimental Parameter Settings

Parameter Range
Number of results (k) 5, 10, 15, 20, 25

Number of data objects |D| 10, 20, 30, 40, 50 (x1000)
Query parameter (α) 0.01, 0.1, 1, 10, 100
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Figure 2: Effect of k on query processing
time.
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Figure 4: Effect of α on query processing
time.

The description of each data object is extracted from twit-
ter1 messages, we assigned one tweet per data object. As a
benchmark for eSPAK, we use a baseline method that com-
putes the score of every data object using the incremental
network expansion [9]. Both the algorithms are implemented
in Java and executed on a desktop PC 2.80 GHz, Intel Core
i5 with 8GB memory. In the experiments, we compared the
query processing time of both algorithms. Table 1 summa-
rizes the parameters used in the experiments. In each ex-
periment, we vary a single parameter within the range that
is shown in Table 1 while keeping the other parameters at
the bolded default values.

5.2 Experimental Results
Figure 2 shows the query processing time for eSPAK and

baseline as a function of the number k of requested data ob-
jects with the highest score. The query processing time of
the baseline is nearly stable regardless of the k value because
it always computes the score of each data object. However,
the query processing time of eSPAK increases slightly with
the k value. In Figure 3, we evaluate the performance of
eSPAK and baseline by varying the cardinality of data ob-
jects. The query processing time of both the algorithms is
sensitive towards an increase in |D|. However, eSPAK scales
much better than baseline. Figure 4, demonstrates the im-
pact of query parameter α on query processing time. A small
value of α indicates more importance of textual relevance,
whereas a high value of α gives more preference to the spa-
tial relevance. Experimental results reveal that α does not
indicate a significant impact on the query processing time
of eSPAK and baseline. It is interesting to note that, both
approaches performs better for higher values of α, which in-
dicates more importance to spatial relevance. This is mainly
because, when spatial relevance is higher, fewer edges are re-
quired to explore to find the top-k data objects.

6. CONCLUSIONS
In this paper, we investigate top-k spatial keyword queries

in directed road networks. We presented an efficient index-
ing framework using inverted files, that indexes the data
objects on edges which allows effective searching of data ob-
jects relevant to query in term of both textual and spatial
relevance. Furthermore, we present an algorithm for eval-
uating top-k spatial keyword queries. Finally, the experi-
mental evaluation conducted on real road networks demon-
strates that eSPAK drastically reduces the query processing
time compared to baseline algorithm.

1http://twitter.com
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